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Abstract. The phase structure of hadrons and the quark–gluon plasma is investigated by two types of
equation of state of the hadrons, namely the ideal hadron gas model and the compressible bag model. It is
pointed out that, while the ideal gas model produces an unrealistic extra hadron phase, the compressible
bag model gives the expected and reasonable phase diagram even if the rich hadron spectrum is taken into
account.

1 Introduction

The quark–gluon plasma (QGP) has been expected to
appear at high temperature and/or high density, due to
asymptotic freedom of QCD. Indeed, not a few of the ex-
perimental results up to CERN SPS incident energies sug-
gest the existence of the QGP phase [1], and the recent
experiment at BNL RHIC may give us cleaner and richer
signals [2].

Theoretically, in lattice QCD calculations [3–7], no
phase transition is observed for the two light, or two light
and one medium light flavor cases at zero baryon density.
In both cases only a continuous cross-over is observed for
realistic quark mass values.

On the other hand, in a more phenomenological ap-
proach, the equations of state of QGP and hadrons are
assumed, and the transition point is determined by the
Gibbs condition. In this approach, the cross-over cannot
be reproduced, and that may give rise to doubt on its va-
lidity. However, the authors believe that the gross struc-
ture of the phase diagram obtained in this approach should
still remain valid far away from the cross-over region. It
should also be noted that at a finite baryon chemical po-
tential, not much is known from lattice QCD because of
a well-known technical difficulty which makes the Monte
Carlo technique inapplicable.

The purpose of the present paper is to investigate what
type of equation of state of the hadrons is preferable in
the phenomenological approach, where the discussion is
devoted exclusively to the gross phase structure of hadrons
and QGP, neglecting the multi-quark states. This means
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that the detailed structure around the phase transition or
cross-over region is neglected.

In the phenomenological approach, there are the fol-
lowing problems concerning the gross structure of phase
diagrams. When a simple ideal gas of nucleons is used
for the equation of state of the hadrons and the MIT
bag model is used for the equation of state for QGP, the
hadron phase appears at high density and at zero temper-
ature (see, e.g., [8]). This is because

p0
h/p0

q → 27 as µB → ∞ (T = 0), (1)

where p0
h and p0

q denote the pressures of the ideal nucleon
phase and (ideal) quark phase, respectively, and µB is the
baryochemical potential. To circumvent this difficulty, vol-
ume exclusion effects of hadrons of van der Waals type
were taken into account (see, e.g. [8,9]; see also [10]). How-
ever, the treatments in [8–10] are thermodynamically in-
consistent [11], for example, n �= (∂p/∂µ)T , s �= (∂p/∂T )µ.
Although the formulation in [11] is thermodynamically
consistent, it has still the difficulty that the pressure di-
verges as n → 1/v0, where n is the number density and v0
is the fixed hadron volume, and acausality emerges (there
is no relativistic rigid body) as the authors themselves
pointed out. Thus we were led to the “soft core” model;
that is, the compressible bag model [12,13].

In addition to the difficulty that the hadron phase ap-
pears at high density and at zero temperature, the equa-
tion of a simple ideal gas of hadrons again suffers from the
same difficulty at another region; that is, at high temper-
ature and zero baryon number density [14]. The argument
in [14] is simple. At µB = 0 and in the high-temperature
region, the pressure pq of the QGP phase and the pressure
ph of the hadron phase are given by

pq = gq(1/90π2)T 4 − B, ph = gh(1/90π2)T 4, (2)

where gq and gh are the degeneracy factors in each phase,
and B is the bag constant. When we consider a mixed gas
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of lower lying nonstrange hadrons, that is, π, ρ, N and ∆,
the degeneracy factor gh becomes 3+9+(7/4)(4+16) = 47
and this exceeds gq = 2·8+(7/4)4·3 = 37. Thus the hadron
phase appears again. In the compressible bag model, how-
ever, the effective degeneracy factor of the hadron phase is
greatly reduced so that the QGP phase is realized at high
temperature even if infinitely many nonstrange mesons are
taken into account [15].

The authors of [12,13,15] suggested that the compress-
ible bag model gives a phase diagram free from the above
difficulties, but it has not been shown explicitly. In [12] the
equations of state only at T = 0 are used for discussing
neutron stars, and in [15] are used those at µB = 0 for mul-
tiple production in heavy ion collisions. In [13] the phase
diagram with finite T and µB is calculated, but the rich
hadron spectrum is neglected.

The unique purpose of the present paper is, then, to
show that the compressible bag model indeed gives the
naively expected phase diagram in all regions. As far as
the authors know, this is the only model that satisfies the
following:
(1) It is built in a thermodynamically consistent formal-
ism.
(2) It is valid in very high-temperature regions even if rich
hadron spectra are taken into account.
(3) It is explicitly calculable in whole regions, and it gives a
well-behaved phase diagrams, i.e. there is no extra hadron
phase.

Since the hadron level structure affects the phase dia-
gram, we consider the following two models:
Model I: The hadron phase consists of the NN̄π system
while the QGP phase consists of nonstrange quarks, their
anti-quarks and gluons.
Model II: The hadron phase consists of a system of 102
species of hadrons of which the masses are less than 10.6
GeV, except for hadrons with a top quark [16]. The QGP
phase consists of u-, d-, s-, c-, and b-quarks, and their
anti-quarks and gluons.

Model I is a model with a few hadrons, while model II
is an example which includes many hadrons.

While in [15] the continuous level-density function of
[17] is used, in this paper the phase diagrams are calcu-
lated with a real spectrum of hadrons in order to avoid the
model dependence. The effect of the cutoff in the hadron
spectrum in model II is discussed in the final section.

In Sect. 2, for comparison the phase structure in a free
point-like model is shown with the above two types of
models, where one can explicitly see the difficulties ex-
plained in this section. In Sect. 3, the equation of state
in the compressible bag model [13,15] is briefly reviewed,
and with the resulting phase diagram it is shown that the
difficulty is indeed removed. The final section is devoted
to concluding remarks.

2 A difficulty in the phase structure
for models of free point-like hadrons

In this section, we assume that all hadrons, quarks, and
gluons are free point-like objects and discuss their phase

structure. For this purpose, we present expressions for the
pressures of free point-like particles in order to establish
our notation in the first subsection. On the basis of these
expressions, the phase diagram is discussed and a difficulty
is pointed out in the second subsection.

2.1 Pressures for hadron gas and QGP

The total pressure p of a mixed gas of N species of free
point-like particles is given by

p(T, µB) =
N∑

n=1

pn(T, µn), (3)

where T (µB) is the temperature (baryochemical poten-
tial) of the gas and pn (µn) is the pressure (baryochemical
potential) of the nth species of particles. The pressure pn

is given by

pn = ηngnT

∫
d3k

(2π)3
log

[
1 + ηn exp

(
−En − µn

T

)]
,

(4)

En =
√

k2 + m2
n, (5)

µn = anµB, (6)

where ηn is a statistical factor that takes the value −1 for
bosons and +1 for fermions, respectively. The quantities
gn, an, and mn denote the degeneracy factor, the baryon
number, and the mass of the nth species of particles, re-
spectively.

In low temperature region, pn is expanded as follows:

pn =
gn

24π2

[
µnk3

nF − 3
2
m2

nµnknF

+
3
2
m4

n log
(

µn + knF

mn

)]
+

gn

12
µnknFT 2

+
7π2gn

720

[
3µn

knF
−

(
µn

knF

)3
]

T 4, (7)

knF =
√

µ2
n − m2

n, (8)

when the nth species of particles are fermions. In the above
knF is the Fermi momentum. Equation (7) is applicable for
µn > mn. Otherwise the pressure pn vanishes identically.

Now let us present expressions for the pressures of
hadrons and QGP. For the total pressure ph of a mixed
gas of N species of free point-like hadrons, it is given by

ph(T, µB) =
N∑

i=1

phi(T, µi), (9)

where phi follows (4)–(8). In the following, we consider two
cases for hadronic systems; that is, model I and model II,
which are defined in the introduction.
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Fig. 1. ph and pq as functions of µ4
B for model I (T = 0). The

unit of B1/4 is GeV

On the other hand, the total pressure of QGP, pq, is
given by

pq(T, µB) =
N ′∑

j=1

pqj (T, µj) − B (10)

in the bag model. Here pqj follows (4)–(8) and B is the
bag constant. The index j denotes the species of particles,
and we consider two cases, model I and model II.

2.2 Phase structure

Given the expressions of the pressures of hadron phase
and QGP phase, we can consider their phase structure.
The critical points are determined by the following Gibbs
condition:

ph(T, µB) = pq(T, µB). (11)
In Fig. 1, ph and pq are plotted as functions of µ4

B, where
T is fixed to zero. In Fig. 2, they are plotted as functions
of T 4, where µB is fixed to zero. In both figures, calcula-
tions are performed for model I. As shown in Fig. 1, there
is no critical point for B1/4 > 0.1536 GeV. For B1/4 =
0.1536 GeV, there is one critical point. For 0.1534 GeV ≤
B1/4 < 0.1536 GeV, there are two critical points. For
B1/4 < 0.1534 GeV, there is one critical point since ph

vanishes for µB < mN and an apparent critical point in
the region µB < mN , where mN is the nucleon mass, is un-
physical. Therefore, at T = 0, an abnormal hadron phase
always appears at high densities.

The reason for this difficulty is as follows. In the higher-
density region of µB � mN , the masses are negligible so
that the pressures ph and pq are approximated as

ph ≈ ghµ4
B, (12)

pq ≈ gqµ
4
q, (13)

where gh (gq) is the statistical degree of freedom of the
hadrons (QGP). Since µq = (1/3)µB, (13) reads

pq ≈ gq

81
µ4

B. (14)

Fig. 2. ph and pq as functions of T 4 for the model I (µB = 0).
The unit of B1/4 is GeV

Fig. 3. ph as functions of µ for model I and model II (T = 0)

Then ph becomes large faster than pq as µB increases,
since the effective statistical degree of freedom of QGP is
greatly reduced. In other words, the hadrons get a share of
energy three times larger than QGP, when µB increases,
so that ph becomes larger than pq. As a consequence the
hadron phase appears in the high-density region.

Since the difficulty mentioned above stems from the
qualitative nature of the model of the hadrons, and that
their statistical degree of freedom is too large, we should
consider to modify the model of the hadrons. So far we
consider model I at present; the situation will become
worse in model II, since the statistical degree of freedom
further becomes large.

In Fig. 3, the ph’s for model I and model II are plotted
as functions of µB, where T is fixed to zero, and in Fig. 4,
ph’s for those are plotted as functions of T , where µB is
fixed to zero. As seen in Fig. 3 (Fig. 4), ph for model II
becomes considerably larger than ph for model I in the
high-density (temperature) region, as expected.
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Fig. 4. ph as functions of T for model I and model II (µB = 0)

Fig. 5. ph and pq as functions of µ4
B for model II (T = 0). The

unit of B1/4 is GeV

In Fig. 5, ph and pq are plotted as functions of µ4
B with

T = 0. In Fig. 6, they are plotted as functions of T 4 with
µB = 0. In both figures, calculations are performed for
model II. The qualitative features in Figs. 1 and 5 are the
same. However, the qualitative features in Figs. 2 and 6 are
different. As shown in Fig. 6, the hadron phase appears in
the high-temperature region. The resulting phase diagram
for model I [9] is shown in Fig. 7 and that for model II is
shown in Fig. 8. The situation for model II has become
worse than for model I. In order to modify this situation,
we should replace the model of the hadrons with alterna-
tive ones. As one of them, we formulate the compressible
bag model in the next section.

3 The compressible bag model

First, we briefly summarize the results of [13,15]. Let us
suppose a mixed gas of n species of hadrons enclosed in

Fig. 6. ph and pq as functions of T 4 for model II (µB = 0).
The unit of B1/4 is GeV

Fig. 7. Phase diagram for model I. Besides the low-density
and the low-temperature region, the hadron phase appears in
the high-density and low-temperature region. The unit of B1/4

is GeV

volume V at finite temperature T . In the compressible bag
model, the free energy function F̂ of the gas is given by

F̂ =
n∑

i=1

Ff(Ni, V
′, T, Mi(vi)), (15)

V ′ = V − b

n∑

j=1

Njvj , (16)

where Ni is a number of ith species of hadrons and vi is
its volume and Mi its mass. The constant b is a volume
exclusion efficiency parameter. The function Ff is the free
energy function of the free point-like hadron gas. As for
the mass function Mi(vi), we assume the one of the MIT
bag model:

Mi(vi) = Aiv
−1/3
i + Bvi, (17)
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Fig. 8. Phase diagram for model II. Besides the low-density
and the low-temperature region, the hadron phase appears
in the high-density and the high-temperature region. The
QGP phase is realized only in the mid-density and the mid-
temperature region. The unit of B1/4 is GeV

where B is the bag constant.
Under the approximation that the average of the in-

verse Lorentz factor of the ith species of hadrons equals
unity (〈γ−1

i 〉 ≈ 1) in the rest frame of the system, the basic
requirement of the compressible bag model that ∂F̂/∂vi =
0 and the requirement that the chemical potential of
hadron should be µi = ∂F̂/∂Ni = aiµB, where ai is the
baryon number of the ith species of hadrons, determine
the pressure p of the system as a function of T and µB by
the following equation:

p =
n∑

i=1

ηigiT

∫
d3k

(2π)3
(18)

× log {1 + ηi exp[−(Ei − µ′
i(p, mi))/T ]} ,

Ei =
√

k2 + Mi(p, mi)2,

Mi(p, mi) = mi

(
1 +

3bp

4B

) (
1 +

bp

B

)−3/4

, (19)

µ′
i(p, mi) = µi − bvip = aiµB − bmip

4B

(
1 +

bp

B

)−3/4

,

(20)

where gi is the degeneracy factor of the ith species of
hadrons and mi = 4(Ai/3)3/4B1/4 is its mass in the vac-
uum.

Here two comments are in order. First p determined as
above depends on b and B only in the combination of b/B
since the Mi and µ′

i depend on b and B in that combina-
tion as seen in (19) and (20). Second the pressure in the
compressible bag model does not become so large in the
high-density and/or high-temperature region, in contrast
to the one in the model of free point-like hadrons. This
is because the masses of the hadrons become large in the
high-density and/or high-temperature region in the com-

Fig. 9. (a) A solid line shows ph as a function of µB for the
compressible bag model. (b) A dashed line shows pq for the
QGP phase. (c) A dash-dotted line shows ph for the free point-
like hadron model. All lines are calculated for model II with
B1/4 = 0.25 GeV and T = 0

pressible bag model so that the kinetic energies of the
hadrons increase rather slowly and the pressure of the
hadrons do not become so large. Thus the compressible
bag model has a chance to evade the difficulty discussed
in the previous section. In the following, we ensure that
the difficulty is indeed removed, by numerical calculations.

In order to do numerical calculations, we have to fix
bag constant B and the volume exclusion parameter b.
The parameter b is determined by the relation

bvN (p = 0) =
bmN

4B
=

4π

3
(0.82 fm)3, (21)

when the bag constant is given. The value 0.82 fm is the
proton charge radius. It should be noted that the equa-
tions of state for the hadron phase are determined uniquely
at this stage since the equation of states for the hadron
phase only depend on b/B. We tentatively put

B1/4 = 0.25 GeV, (22)

and then get b = 5.0. The resulting ph and pq are shown
as functions of µB (T ) in Fig. 9 (Fig. 10). We can recognize
that the compressible bag model does not suffer from the
difficulty that exists for free point-like hadrons. This point
is more clearly seen by the phase diagrams shown in Fig. 11
with B1/4 = 0.25 GeV. The critical temperature Tc and
the critical baryochemical potential µc are given by

Tc = 0.18 GeV, µc = 2.2 GeV in model I, (23)
Tc = 0.17 GeV, µc = 1.8 GeV in model II. (24)

It is noted that the equation of state of the hadrons are
determined by the ratio b/B and that of QGP by B; the
critical values, then, depend on B and b. If the constraint
(21) is taken, the values depend only on B. As a reference,
some cases are shown below:
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Fig. 10. (a) A solid line shows ph as a function of T for the
compressible bag model. (b) A dashed line shows pq for the
QGP phase. (c) A dash-dotted line shows ph for the free point-
like hadron model. All lines are calculated for model II with
B1/4 = 0.25 GeV and µB = 0

Fig. 11. Phase diagram for model II (solid line). For compar-
ison, the phase diagram is shown for model I (dashed line).
Calculations are done with B1/4 = 0.25 GeV

Tc = 0.14 GeV, µc = 1.7 GeV in model I, (25)
Tc = 0.14 GeV, µc = 1.4 GeV in model II, (26)

for B1/4 = 0.20 GeV and

Tc = 0.22 GeV, µc = 2.7 GeV in model I, (27)
Tc = 0.21 GeV, µc = 2.1 GeV in model II, (28)

for B1/4 = 0.30 GeV.
From Figs. 9–11 one can see that the compressible bag

model gives an expected and reasonable phase diagram in
the whole regions. This result is stable in the sense that
one can choose the bag constant from a rather wide range.

4 Concluding remarks

In this paper, it has been shown by explicit calculations
that the compressible bag model gives a well-behaved
phase diagram in the whole regions, even if many hadron
states are taken into account. In the present calculation it
is true that, even in model II, the infinite series of hadrons
are cut off at finite mass, but the compressible bag model
may give the expected phase diagram if an infinite series
of hadrons are included. This is because, in the model,
the masses of the hadrons increase and the effect of a
higher mass state is much suppressed in high-temperature
or high-density regions. Indeed in [15] a continuous level-
density function is used for hadrons and it is shown that
the abnormal hadron phase does not appear in the com-
pressible bag model, although limited at µB = 0.

Free point-like models produce an unnatural hadron
state in high-temperature or high-density regions as shown
in Sects. 1 and 2. A way to avoid this difficulty is the
compressible bag model, and it is worth examining it in
various phenomenological analyses.

References

1. Proceedings of the International Conference on Ultra-
Relativistic Nucleus–Nucleus Collisions (Quark Matter),
Nucl. Phys. A 661, (1999); 638, (1998); 610, (1997)

2. Proceedings of the 15th International Conference on Ultra-
Relativistic Nucleus-Nucleus Collisions (Quark Matter
2001), Long Island, New York, 2001, edited by T.J. Hall-
man, D.E. Kharzeev, J.T. Mittcell, T. Ullrich (Elsevier,
New York 2002)

3. Lattice 2000, 18th International Symposium on Lattice
Field Theory, Nucl. Phys. B (Proc. Suppl.) 94, (2001)

4. Proceedings of the International Workshop Non-
Purturbative Methods and Lattice QCD (World Scientific,
Singapore 2001)

5. O. Philipsen, in Lattice 2000, Nucl. Phys. Proc. Suppl. 94,
49 (2001); hep-lat/0011019

6. F. Karsh, Lattice QCD at High Temperature and Density,
hep-lat/0106019

7. Z. Foder, S.D. Katz, in Lattice 2001, Nucl. Phys. Suppl.
106, 441 (2002); hep-lat/0110102

8. J. Cleymans, K. Redlich, H. Satz, E. Suhonen, Z. Phys. C
33, 151 (1986)

9. H. Kouno, F. Takagi, Z. Phys. C 42, 209 (1989)
10. R. Hagedorn, J. Rafelski, Phys. Lett. B 97, 136 (1980)
11. D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z.
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